您的位置: 旅游网 > 影视

仅用语音AI就能脑补你的脸_a

发布时间:2020-01-17 02:17:51

仅用语音 AI就能“脑补”你的脸

作者 | Wav2pix 研究团队

译者 | 刘畅

Jane

【导语】

之前我们为大家介绍过一项非常酸爽的研究Talking Face Generation:给定音频或视频后(输入),可以让任意一个人的面部特征与输入的音视频信息保持一致,也就是说出输入的这段话。当时就想到了杨超越的声音+高晓松的脸这样的神仙搭配

不过,近期一项新研究再度抓到了笔者的眼睛!在最新的研究中,研究者仅需要音频信息就生成了人脸... ...如此鬼畜的操作,此乃头一次见啊!接下来就为大家介绍一下这项工作!

音频和图像是人类最常用的两种信号传输模式,图像传达的信息非常直观,而语音包含的信息其实比我们想象的要更丰富,包括说话人的身份,性别和情绪状态等等。从这两个信号中提取的特征通常是高度相关的,可以让人仅聆听声音就可以想象他的视觉外观。WAV2PIX 的工作就是仅利用语音输入,来生成说话者的人脸图像。其实这就是一个跨模态的视觉生成任务。

谈到这项研究的贡献,主要有三点:

提出了一个能够直接从原始的语音信号生成人脸的条件GAN:WAV2PIX;

提供了一个在语音和人脸两方面综合质量很高的一个数据集:Youtubers;

实验证明论文的方法可以生成真实多样的人脸。

论文收集了大V用户(Youtubers)上传到 Youtube 的演讲视频,这些视频通常具有高质量的说话环境、表达方式、人脸特征等。Youtubers 数据集主要由两部分组成:一个是自动生成的数据集和一个手动处理后的高质量的子集。

主要的预处理工作:

音频最初下载的是高级音频编码(AAC)格式,44100 Hz,立体声。因此转换为 WAV 格式,并重新采样到 16 kHz,每个样例占 16 位并转换为单声道。

采用基于 Haar 特征的人脸检测器来检测正脸。仅采纳置信度高的帧

保存检测出来的那帧图像及前后两秒的语音帧,以及一个标签(identity)。

方法介绍

研究主要由三个模块构成:一个是语音编码器,一个是图片生成络,一个是图片判别络。

语音编码器(Speech Encoder):已有的方法大多数是手工提取音频特征,并不是针对生成络的任务进行优化的,而 SEGAN 提出了一种在波形上用于语音处理的方法。因此作者在已有的工作 SEGAN 上进行修改。修改为具有 6 层一维络,并且每层的 kernel 大小是 15x15,步长为 4,然后每层卷积络后面使用 LeakyReLU 激活函数,络的输入通道是 1。输入 16kHZ 下1 秒的语音片段,上述的卷积络可以得到一个 4x1024 的张量,然后采用三个全连接络将特征数量从 4x1024 降到 128。作为生成器络的输入。

图片生成器(Image Generator Network):输入是语音编码器的 128 向量。采用二维转置卷积、插值、dropout 等方式将输入转为 64x64x3 或者 128x128x3 的张量。在 G 的损失函数中添加了一个辅助损失用于保持说话人的标签(Identity)。

图片判别器(Image Discriminator Network):判别器由几层步长为 2,kernel 大小是 4x4 的卷积络组成,并使用谱归一化和 LeakyReLU 激活函数。当张量为 4x4 时,作者拼接了语音的输入,并采用最后一层络来计算 D 络的分数。

实验过程

训练:将手动处理后的数据集作为训练集,采用数据增强等手动。值得注意的是,在处理时将每张图像复制了 5 次,并将其与 4 秒音频里面随机采样的 5 个不同的1秒音频块进行匹配。因此总共有 24K 左右的图像-音频对用于模型训练。其它超参数采用参考的文献设置。

评估:下图给出了可视化的结果,虽然生成的图像都比较模糊,但基本可以观察到人的面部特征,并且有不同的面部表情。

作者进一步微调了一个预训练的 VGG-FACE Descriptor 络,用于量化测试结果,在作者提供的数据集上,可以达到 76.81% 的语音识别准确率和 50.08% 的生成图像准确率。

为了评估模型生成图像的真实程度,作者定义了一个 68 个人脸关键点的精度检测分数。如下图所示,测试结果精度可以达到 90.25%。表明在大多数情况下生成的图像保留了基本的面部特征。

1岁宝宝不消化怎么办两岁宝宝积食怎么办宝宝积食食疗方法

舒筋活血止痛的药
醋酸地塞米松口腔贴片功效如何
口感符合儿童需求的药物哪个好
用法用量明确精准的小孩止咳药物
猜你会喜欢的
猜你会喜欢的